Uniform approximation of Vapnik–Chervonenkis classes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniform approximation of Vapnik-Chervonenkis classes

For any family of measurable sets in a probability space, we show that either (i) the family has infinite Vapnik–Chervonenkis (VC) dimension or (ii) for every ε > 0 there is a finite partition π such the essential π -boundary of each set has measure at most ε. Immediate corollaries include the fact that a separable family with finite VC dimension has finite bracketing numbers, and satisfies uni...

متن کامل

The best uniform polynomial approximation of two classes of rational functions

In this paper we obtain the explicit form of the best uniform polynomial approximations out of Pn of two classes of rational functions using properties of Chebyshev polynomials. In this way we present some new theorems and lemmas. Some examples will be given to support the results.

متن کامل

Uniform Glivenko–Cantelli Classes

A class of sets, or functions, is said to be P–Glivenko–Cantelli if the empirical measure Pn converges in some sense to the true measure, P , as n → ∞, uniformly over the class of sets or functions. Thus, the notions of Glivenko–Cantelli, and likewise uniform Glivenko–Cantelli are for the most part qualitative assessments of how “well–behaved” a collection of sets or functions is, in the sense ...

متن کامل

The Best Uniform Polynomial Approximation of Two Classes of Rational Functions

In this paper we obtain the explicit form of the best uniform polynomial approximations out of Pn of two classes of rational functions using properties of Chebyshev polynomials. In this way we present some new theorems and lemmas. Some examples will be given to support the theoretical results.

متن کامل

On the Approximation of Functional Classes Equipped with a Uniform Measure Using Ridge Functions

We introduce a construction of a uniform measure over a functional class B which is similar to a Besov class with smoothness index r. We then consider the problem of approximating B using a manifold Mn which consists of all linear manifolds spanned by n ridge functions, i.e., Mn=[ i=1 gi(ai } x) : ai # S , gi # L2([&1, 1])], x # Bd. It is proved that for some subset A/Br of probabilistic measur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bernoulli

سال: 2012

ISSN: 1350-7265

DOI: 10.3150/11-bej379